Efficient identification of Tanimoto nearest neighbors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Identification of Tanimoto Nearest Neighbors All Pairs Similarity Search Using the Extended Jaccard Coefficient

Tanimoto, or extended Jaccard, is an important similarity measure which has seen prominent use in fields such as data mining and chemoinformatics. Many of the existing state-of-the-art methods for market basket analysis, plagiarism and anomaly detection, compound database search, and ligand-based virtual screening rely heavily on identifying Tanimoto nearest neighbors. Given the rapidly increas...

متن کامل

Boosting Nearest Neighbors for the Efficient Estimation of Posteriors

It is an admitted fact that mainstream boosting algorithms like AdaBoost do not perform well to estimate class conditional probabilities. In this paper, we analyze, in the light of this problem, a recent algorithm, unn, which leverages nearest neighbors while minimizing a convex loss. Our contribution is threefold. First, we show that there exists a subclass of surrogate losses, elsewhere calle...

متن کامل

Nearest-neighbors medians clustering

We propose a nonparametric cluster algorithm based on local medians. Each observation is substituted by its local median and this new observation moves toward the peaks and away from the valleys of the distribution. The process is repeated until each observation converges to a fixpoint. We obtain a partition of the sample based on the convergence points. Our algorithm determines the number of c...

متن کامل

Boruvka Meets Nearest Neighbors

Computing the minimum spanning tree (MST) is a common task in the pattern recognition and the computer vision fields. However, little work has been done on efficient general methods for solving the problem on large datasets where graphs are complete and edge weights are given implicitly by a distance between vertex attributes. In this work we propose a generic algorithm that extends the classic...

متن کامل

Iterative Nearest Neighbors

Representing data as a linear combination of a set of selected known samples is of interest for various machine learning applications such as dimensionality reduction or classification. k-Nearest Neighbors (kNN) and its variants are still among the best-known and most often used techniques. Some popular richer representations are Sparse Representation (SR) based on solving an l1-regularized lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Data Science and Analytics

سال: 2017

ISSN: 2364-415X,2364-4168

DOI: 10.1007/s41060-017-0064-z